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Abstract 
 
Application of the finite difference time domain numerical modelling method to the solution 

of problems in predicting vibration, groundborne noise and noise radiated from vibrating 
structures, and predicting the performance of vibration-isolating track forms, if sufficient data 
are available, can closely model the real behaviour of rail systems in three-dimensions in a 
resource-efficient way can. Detailed representation of structures and lithology to encompass all 
physical forms of wave propagation is possible, together with methods of addressing frequency-
dependent dynamic moduli. Problems associated with arbitrary element shapes can be resolved, 
together with the topic of boundary absorption. Anisotropic behaviour of soils and other 
materials is accommodated. Methods of modelling hysteretic, linear viscous and friction 
damping are available. Combination of the FDTD method with a time-domain boundary element 
method for predicting radiated airborne noise in the far field allows savings in computing 
resources. The time-domain approach allows the generation of audio files for the auralisation of 
results. The problem of gathering reliable and sufficiently detailed information about material 
properties is significant, particularly with regard to small-strain soil moduli and frequency-
dependent loss factors. Results of predictions and measurements of existing railways are 
presented. 

 
1. Introduction 

 
When applied to vibration and groundborne noise from railways, particularly underground 

railways, the FDTD method [1] facilitates modeling not only of vibration generation by a 
moving train at the wheel/rail interface, but also of the behaviour of rail support systems, 
tunnels, structures, soil, buildings and airspaces. Provided that a sufficiently detailed 
representation of the entire system is included in the model, the accuracy will be dependent on 
the correctness of the properties assigned to the cells of the model. In practice, the effect of 
uncertainty in cell properties exceeds the error caused by the discretizing of the wave equation 
that is the finite difference method. 

The finite-difference-time-domain (FDT D) method enables three-dimensional numerical 
modelling of a system with a moving source to be carried out efficiently. For radiation of noise 
through air to the far field, the FDTD method can be combined with the boundary element 
method enabling further computational efficiency. 

 
2. The finite difference algorithm 
 
2.1 Basic Principles 

The wave equation in differential form is as follows 
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for the x axis, with corresponding equations for the y and z axes, where ξ, η and ζ are 

displacements in three orthogonal axes; λ and µ  are Lamé constants and ρ is the density. The 
Lamé constant µ is also known as the shear modulus, G. The Lamé constant λ is also known as 
the coefficient of dilatation and is given by 

 (2) 
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where σ  is Poisson’s ratio. 

 
The wave equation can be stated in finite difference form by replacing the differential 

operator with the approximation 

x∂
∂ξ

≈ (x[i][j][k] - x[i-1] [j][k])/ ∆x  (3) 

For ∆x →0 these two forms are identical. 
Effectively, the finite difference process is as follows, for each axis, i, j and k. The example 

given is for axis i. Each point p(i,j,k) lies at the corner of a cell and is assigned a mass equal to 
one eighth of the sum of the eight contiguous cells as well as a displacement and velocity. 

 
1)  Compute pressure gradient 
2)  Compute shear force gradient 
3)  Accelerate p(i,j,k) by ∆v=F/ρ ∆t where F is the sum of the force derived from 

stages 1 & 2 and ρ is the density assigned to the point and v is the point velocity. 
4)  Displace p(i,j,k) by ∆x=∆v*∆t where x is point displacement; ∆t is one time step. 
5) repeat from step 1 
 
The geometric part of wave propagation is completely represented by this process. However, 

it is not possible to compute force and velocity for the same cell element.  Techniques are used to 
overcome this problem including the use of a staggered grid. For present purposes a process of 
interpolation to determine force and velocity at the same grid point is preferable, in which the 
force gradient acting on each of the eight sub-cells is interpolated from the displacement of 
neighbouring points. Cells are most conveniently rectangular, but other shapes are possible 
[2][3]. 

In principle the entire system can be represented by appropriate coding of cells to represent 
the vehicle body, suspension, bogies, wheels etc. 

The FDTD algorithm can be written in terms of velocity only, discarding displacement, but 
this is only convenient for an infinite, homogeneous, isotropic medium. 

 
2.2 Basic Principles 

Because of the general nature of the wave equation, provided that cells are coded 
appropriately, all wave types will emerge in an FDTD model provided that the wavelength is 
several times the individual cell size. Thus compression waves, shear waves, Rayleigh waves 
where there is a surface between the ground and an airspace or void, Stoneley waves at interfaces 
and Lamb waves in layers all occur where relevant without additional coding. In beams and 
plates, bending waves occur automatically and appropriate representation of supports produces 
correct beam and plate modes. 
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2.3 Damping 

Damping can take several forms, including viscous, friction and hysteretic damping. In the 
finite difference algorithm it is possible to create a frequency dependent (including a frequency-
independent) damping term with any desired spectrum shape using the relaxation principle of 
Boltzmann [4] such that  

s(t) = D1ε(t) - ∫ ∆∆∆− )()()( tdttt ϕε  (4) 

where ϕ(∆t) = τ

τ
/2 teD ∆− is an after-effect function, D2 is a constant and τ is a relaxation time. D1 

is a modulus, s(t) is stress and ε(t) is strain. By combining several after-effect functions with 
different values of D2 and τ, any relationship between loss factor and frequency may be 
represented. Note that in the frequency domain the integral has a real and imaginary part, with 
the result that the value of the D1 modulus is reduced by the inclusion of the relaxation terms. 
Depending on the choice of the constants and relaxation times, the stiffness of a resilient element 
will be frequency-dependent, and the value of D1 must be adjusted at the same time that D2 and τ 
are selected to give the required dynamic stiffness. Equation (4) can be discretized and combined 
with the finite difference algorithm for the wave equation. 

 
2.4 Model boundaries 

The potential problem of reflections from model boundaries can be overcome by the use of an 
impedance matching technique. This effectively assigns to the cells which are required to be 
non-reflective on the boundaries of the model the properties of a massless viscous damper such 
that  
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where η is the loss factor (dimensionless), K’’ is the imaginary part of a complex spring stiffness 
in which the real part is zero, ω is the angular frequency, ρc is the characteristic impedance of 
the medium, ξ0 and ξ-1 are the displacements of cell points 0 and –1 where the boundary is at cell 
0, ρ  is the density of the cell contents and v0 is the velocity of cell 0. 

 
2.5 Porous media and water saturation 

The topic of sound propagation in fluid-saturated saturated porous solids was pioneered by 
Biot [5][6], Biot predicted the existence of two compressional waves and one shear wave. One of 
the compressional waves attenuates very rapidly, and the other can be regarded as a modified 
form of the compressional wave which would exist in the dry solid. 

Biot’s work was developed by Stoll [7] to include friction damping in the frame moduli The 
FDTD implementation of the Biot-Stoll equation can be simply achieved by using the equation 
to compute compressional wave speeds of the first kind, and shear wave speeds, and the 
frequency-dependent loss factor, and adjusting the parameters of the cells to yield the 
appropriate wave speeds and loss factors. Because the compressional wave of the second kind 
attenuates very rapidly, it can be ignored. However, it does carry part of the vibrational energy, 
and at reflections between interfaces, for example at the top of a water table, some reflected 
energy will appear as a compressional wave of the second kind, to be rapidly attenuated. This is 
a form of damping which is not otherwise represented and may partially account for the higher 
observed attenuation rates than can be accounted for mathematically. 
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2.6 Anisotropy 

Many soils, particularly overconsolidated clays, have moduli which depend on direction. A 
particular advantage of the FDTD method is that difference values of G and D can be applied to 
the i, j and k directions. The dependence of moduli on confining pressure, and thereby on depth 
below ground can also be taken into account by varying the values of G and D with increasing 
depth. 

 
2.7 Stability 

For a FDTD model to be stable, the time step used must not exceed the Courant number, 
given by  
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where ∆x, ∆y, and ∆z are the cell sizes in the i, j and k directions. 
 

2.8 Bandwidth 

The lower limit of the bandwidth of an FDTD model is dependent on the run time, which 
should preferably be at least 4/fo where fo is the lower boundary of the frequency range. The 
upper limit is defined by the cell size, and the must be at least two cells per wavelength, and 
preferably four or more cells per wavelength. The input forcing signal should be filtered with a 
cut-off at the upper frequency limit of the bandwidth. 

 
2.9 Excitation and input force 

For a railway model, the excitation is, firstly, a time-dependent force caused by the wheel/rail 
roughness profile. This is input as the force caused by the displacement of the Hertzian contact 
spring between a railway wheel and the rail, typically assumed to be 1.2 GN/m. However, the 
train is moving, so the point of contact must move at the same rate. To avoid a step-wise motion, 
the application of the force to the rail is preferably achieved by polynomial interpolation across 
the edges of adjacent cells. Secondly, the effect of the moving load at the wheel is modelled by 
applying the acceleration due to gravity to the wheel at each time step. 

The wheel/rail roughness profile may be an actual profile measured from actual track, or a 
synthesised profile which has the amplitude and spectrum shape typically found on the type of 
railway in question. Joints in the rail or flat spots on the wheel tread can be introduced as 
superimposed displacements in the roughness signal. 

 
2.10 Output 

Primary output is the displacement or velocity of cells of interest, in the time domain. This 
may be converted to audio format (e.g. WAV) to enable the modelled signal to be auralised. The 
time domain signal is normally subjected to a frequency transform and expressed as a 1/3 octave 
spectrum. The velocity and pressure at cells of the boundary of a radiating object may be used in 
a boundary element algorithm within the FDTD code [1] for predicting, for example, airborne 
sound levels at distances outside the extent of the FDTD grid. 
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3. Choosing Cell Properties 
 
The accuracy of an FDTD model depends, of course, on the appropriate assignment of 

properties to each cell. The properties to be assigned are shear modulus, compression modulus, 
(or shear modulus and Poisson’s ratio), loss factor and density. Loss factor is likely to be 
frequency dependent, and the use of the Boltzmann relaxation method produces some frequency 
dependence in the moduli, with the result that the Boltzmann parameters must be chosen not 
only to give the appropriate loss factor, but also the appropriate shear and compression moduli 
all as a function of frequency. 

Because of the limitations of the Courant number, very small cell sizes, for example to 
represent the webs and flanges of steel beams, can lead to excessively short timesteps and 
excessive run times. This problem can be overcome by representing an element such as an “H” 
section beam as a rectangular bar, and assigning sizes for ∆x, ∆y and ∆z, and for shear and 
compression modulus, to give the same value of bending stiffness in each direction, and mass per 
unit length, as those possessed by the actual section. Bending stiffness is the product of Young’s 
modulus and the second moment of area of the section. This simplification is acceptable when 
the only significant contribution of the element is in terms of bending waves. In cases where 
longitudinal wave propagation along the beam is significant, its true moduli and cross section 
must be used. 

For concrete structures, a decision has to be made on whether to assume the long-term or 
short-term Young’s modulus, and the normal approach is to assume short-term values. 

For soils and rocks, moduli for infinitesimally small strains must be used, which effectively 
means that data from measurements of wave speeds, rather than from direct measurements of 
moduli are required, and these must be adjusted for the effect of confining pressure, and depth 
below ground. Where appropriate anisotropic material such as clay may require different moduli 
for each direction. The presence of a water table must be taken into account by using appropriate 
saturated and unsaturated values for D. 

When a model includes an airspace, for example air in a room, and sound pressure levels are 
to be computed, the effect of sound absorption in the room must be taken into account. This can 
be simplified if the reverberation time of the room is known or can be reliably assumed, and the 
effect of absorbent room surfaces taken into account by artificially increasing air absorption, 
giving air a loss factor of  

Tf 60

4.4
≈η  (7) 

where f is frequency in Hz. 
 
4. Model Validation 

 
To test the ability of the FDTD method to give useful predictions of groundborne noise and 

vibration for a typical underground railway (using readily available assumptions) a proprietary 
implementation, FINDWAVE® was used to model 3-axis vibration of the ground surface above 
an operating light railway in twin bored tunnels in layered ground. The results were compared 
with measurements. 

The largest uncertainty attaching to any case of groundborne noise is the roughness profile of 
the train vehicle wheels and of the rails. In order to reduce the uncertainty from this cause, 
measurements of the actual rail roughness, and indirect determination of the wheel roughness, 
were made. 
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Figure 1  shows a longitudinal section through the tunnels. The measurement location was in 
the middle of an open car parking area selected to be equidistant from each tunnel.  

 

Figure 1  Longitudinal section through validation site 
 

4.1 Measurement procedure 

Two measurement exercises were carried out: (i) measurements of rail roughness and (ii) 
measurements of three-axis ground surface vibration. Rail vehicle wheel roughness was deduced 
by the method set out in the Appendix. 

 For the vibration measurements, three axes were measured, namely vertical, lateral and 
longitudinal (parallel with the tunnel centreline).  

Passes of a single vehicle pair, one pass in each tunnel, that did not appear to have noticeable 
wheel defects were selected for use in the validation exercise. The procedure set out in the 
Appendix to deduce wheel roughness indicated that in a few 1/3 octave bands it was a significant 
contributor relative to rail roughness. Figure 2  shows the wheel and rail roughness for the 
sections of tunnel represented in the model. 

 FINDWAVE VALIDATION
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Figure 2  Measured and indirectly determined rail and wheel roughness 
Note: The wavelengths correspond to standard frequency bands for the modelled train speed of 47 km/h 
 
Rail roughness was measured at intervals of approximately 0.25mm. Lengths of 65m relevant 

to the location of the rail vehicles during the measurements were extracted and subjected to 
frequency transform by a series of eight overlapped 1/3 octave spectra each approximately 16m 
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long. These were presented as frequency spectra for the relevant train speed directly beneath the 
measurement location, (47 km/h) and the logarithmic mean of the eight spectra was used. 

 
5. The prediction model 

 
A matrix of 108 x 124 x 140 cells each .25m (vertical) x .25m (lateral) x .217m (longitudinal) 

was generated as illustrated in figure 3 . The properties assigned to each cell were as shown in 
table 1. Where the cell size differs from the actual feature, i.e. the rail cross section which is less 
than .25m x .25m, the moduli and densities are reduced to give the correct bending stiffness and 
mass per unit length. The cells representing baseplates were given moduli that gave the correct 
vertical dynamic stiffness.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  Sections through model (left: longitudinal; right: transverse) 
 
The model was connected end-to-end to limit the length and avoid an excessive run time. This 

effectively models an infinitely long train, and may be expected to lead to some overprediction. 
The lateral boundaries and the bottom boundary were made non-reflecting. The model was run 
for 32768 time steps for a total of 1 second. 

 
6. Input data 

 
The train consists of two three-bogie articulated vehicles coupled together. The speed was 47 

km/h. The model input data were as shown in table 1: 
 

Length over couplers (each vehicle) 28.8 m
Vehicle mass per wheel  3249        kg
Vehicle secondary suspension stiffness  383      kN/m 
Secondary suspension damping  37.5      kNs/m 
Sprung mass of bogie per wheel  859.5     kg
Stiffness of primary suspension  1.14      mN/m 
Primary suspension damping  1.6      kNs/m 
Unsprung mass per wheel  468          kg
Hertzian contact stiffness  1.2      GN/m 
1st axle distance from body end  3.05 m
2nd axle distance from body end  4.95 m
3rd axle distance from body end  13.05 m
4th axle distance from body end  14.95 m
5th axle distance from body end   23.05 m 

thTable 1 Vehicle properties 
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The track consisted of BS 80A rail support on resilient baseplates, having a cast top plate on a 
cellular polymer pad through which protrude spring-loaded holding down bolts. The baseplates 
were fastened to a concrete invert. The tunnel is 5.25m internal diameter with segmental 
concrete linings 250mm thick. 

The dynamic stiffness of the baseplate pad was stated as 10MN/m at 40 Hz by the 
manufacturers, and the loss factor, η, was assumed to be 0.1. 

The soil properties were as shown in table 2 in terms of wave speeds. Soil properties were 
selected based on their characteristics and published data for comparable soils. As far as loss 
factor is concerned, neither the Biot-Stoll equation for propagation in water-saturated porous 
media, nor soil non-linearity can account for a value for η of more than about 0.03-0.05 except at 
high frequencies in saturated ground.  

 
 Item µ  (GPa) λ (GPa) ρ (kg/m3) η (dimensionless) 
0 Air 0 13.96 1.18 0.001 
1 Concrete 20.8 4.25 2400 0.01 
2 Made Ground 0.067881 0.33 1500 0.05 
3 Alluvium 0.067881 0.33 1500 0.05 
4 Terrace Gravels 0.2701 0.33 2000 0.05 
5 Saturated Terrace Gravels 0.2835 0.47 2100 0.05 
6 Lambeth Group 0.5804 4.53 2100 0.05 
7 Baseplates 0.0154 0.22 100 0.1 
8 Rail 3.511 0.29 776.59 0.05 
9 Saturated Thanet Beds 0.4417 0.32 2100 0.05 

Table 2 Soil properties: key to the codes in Figure 3  
*adjusted to give bending stiffness and mass per unit length appropriate to rail section 
†adjusted to give dynamic vertical stiffness of 10 MN/n. 
    
The loss factors shown in table 2 are represented in the model as frequency-dependent in the 

manner shown in Figure 4. 
FINDWAVE VALIDATION
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Figure 4. Frequency dependence of loss factors. 
 
 

7. Results 
 
Two model runs were carried out, the first with zero rail roughness and the second with a 

standardised rail roughness profile. The results demonstrated that in this case the ground surface 
vibration is primarily influenced by roughness and that gravitational effects were of second 
order. The results were therefore subsequently adjusted to the measured rail roughness for the 
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northbound and the southbound tunnels, corrected for wheel roughness using the method set out 
in the Appendix. 

The model results together with the measured results are plotted in figures 5 to 8 in terms of 
1/3 octave band 3-axis velocity in dB re 1 nanometre per second. 
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FINDWAVE VALIDATION
Comparison of measured and modelled results - Down Tunnel
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Figure 5  Measured and modelled results (vector sum) for Up tunnel (left) and Down tunnel (right) 
 FINDWAVE VALIDATION

Comparison of measured and modelled results - Up Tunnel
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FINDWAVE VALIDATION
Comparison of measured and modelled results - Down Tunnel
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Figure 6  Measured and modelled results (lateral) for Up tunnel (left) and Down tunnel (right) 

 
 
 
 
 
 
 
 
 
 

FINDWAVE VALIDATION
Comparison of measured and modelled results - Up Tunnel
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FINDWAVE VALIDATION
Comparison of measured and modelled results - Down Tunnel
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Figure 7  Measured and modelled results (vertical) for Up tunnel (left) and Down tunnel (right) 
 
 FINDWAVE VALIDATION

Comparison of measured and modelled results - Up Tunnel
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Figure 8  Measured and modelled results (longitudinal) for Up tunnel (left) and Down tunnel (right) 

FINDWAVE VALIDATION
Comparison of measured and modelled results - Down Tunnel
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8. Discussion 
 
Figure 5 shows broadly similar spectrum shapes for the predicted and modelled results, 

although secondary peaks in the 1/3 octave band spectrum do not coincide precisely. The same is 
true of the results for the x- (lateral) and y- (vertical) axes in figures 6 and 7 There is poor 
agreement for the z- (longitudinal) axis in figure 8 due to the fact that the model is connected 
end-to-end and is therefore for an infinitely long train, whereas the actual train is only 57.6m 
long. 

In terms of A-weighted overall noise level, the measured and modelled results differ by only 
0.3 dB(A) for the Down tunnel, but there is an underprediction of 3 dB(A) for the Up tunnel. 

 
 

9. Conclusion 
 
The FDTD method, when applied to a practical case for which broad assumptions about 

ground conditions are made, gives predictions that correspond reasonably well with measured 
data. The largest area of uncertainty is wheel/rail roughness, and when using the prediction 
method for an unbuilt railway use of maximum roughness amplitudes forming part of a railway 
maintenance policy enables a limit to be applied to the range on uncertainty from this cause. 

 
Appendix: Indirect determination of wheel roughness 

 
It can be assumed that there are two independent, linear sources: rail roughness and wheel 

roughness, both located at the wheel/rail interface.  
The mean square measured overall vibration velocity on the ground surface, in any frequency 

band, will be the sum of the mean square vibration velocity caused by the rail (R) in the relevant 
tunnel and the mean square vibration velocity caused by the wheel (W) of a particular vehicle. 

 The surface mean square vibration velocity (M) is determined by measurement, so for a pair 
of train passages of the same vehicle in tunnel 1 and tunnel 2, at a location midway between the 
two tunnels where the propagation conditions can be assumed to be the same: 

  
M1=R1+W; M2=R2+W (8) 

 
While the values of R1 and R2 are unknown, the ratio of R2 to R1 will be the same as the 

ratio of the source rail roughness in tunnel 2 and tunnel 1 (which have been measured), so, 
putting k=R2/R1 gives 

W=(M2-kM1)/(1-k) (9) 
 

Thus the wheel roughness of a vehicle can be obtained from measurements of the same 
vehicle in the northbound and southbound tunnels at the same speed, at a location midway 
between the tunnels where the propagation conditions can be assumed to be the same for both 
tunnels. There will be some error due to inequalities of the speed profile and differences in 
ground conditions for the two tunnels. The magnitude of the error can be estimated from the 
variation in the value of R2 and R1 (which should be constant) obtained for different 
measurement pairs. 
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