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1 INTRODUCTION 
The most accurate way of discovering the vibration, groundborne noise and structure-radiated noise 
generated by a railway is to construct it and measure the results. When it is necessary to know the 
results in advance, it is possible to model, numerically, the behaviour of the system and to 
“measure” the results in the model. The accuracy will depend of the appropriateness of the 
properties assigned to the elements of the model. 
 
The finite-difference-time-domain (FDTD) method enables three-dimensional numerical modelling of 
a system with a moving source to be carried out efficiently. For radiation of noise through air to the 
far field, the FDTD method can be combined with the boundary element method enabling further 
computational efficiency. 
 
2 THE FINITE DIFFERENCE ALGORITHM 

2.1 Basic Principles 

The wave equation in differential form is as follows 
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for the x axis, with corresponding equations for the y and z axes, where x, y, z and ξ, η and ζ are 
displacements in three orthogonal axes; λ and µ  are Lamé constants and ρ is the density. The 
Lamé constant µ is also known as the shear modulus, G. The Lamé constant λ is also known as the 
coefficient of dilatation and is given by 
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where σ is Poisson’s ratio. 
 
The wave equation can be stated in finite difference form by replacing the differential operator with 
the approximation 
 

x∂
∂ξ

≈ (x[i][j][k] - x[i-1] [j][k])/ ∆x 

For ∆x →0 these two forms are identical. 
 
For a homogeneous, isotropic medium with a finite value for ∆x, ∆y and ∆z, elastic wave 
propagation can be computed using the finite difference substitution 
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Effectively, the process is as follows, for each axis, i, j and k. The example given is for axis i. Each 
point p(i,j,k) lies at the corner of a rectangular cell and is assigned a mass equal to one eighth of the 
sum of the eight contiguous cells as well as a displacement and velocity. The displacement and 
velocity is interpolated for each intermediate “virtual” point p(i+d,i+d,k+d) where d=0 or 0.5. 
 

1)  Compute pressure gradient 
2)  Compute shear force gradient 
3)  Accelerate p(i,j,k) by ∆v=F/ρ ∆t where F is the sum of the force 1 & 

2 and ρ is the density assigned to the point and v is the point 
velocity. 

4)  Displace p(i,j,k) by ∆x=∆v*∆t where x is the point displacement and 
t is one time step. 

5) repeat from step 1 
 

The geometric part of wave propagation is completely represented by this process. However, it is 
not possible to compute force and velocity for the same cell element.  Techniques are used to 
overcome this problem including the use of a staggered grid. For present purposes a process of 
interpolation to determine force and velocity at the same grid point is preferable. Cells are most 
conveniently rectangular, but  other shapes are possible12

 
In principle the entire system can be represented by appropriate coding of cells to represent the 
vehicle body, suspension, bogies, wheels etc. 
 
2.1.1 Wave types 

Because of the general nature of the wave equation, provided that cells are coded appropriately, all 
wave types will emerge in an FDTD model provided that the wavelength is several times the 
individual cell size. Thus compression waves, shear waves, Rayleigh waves where there is a 
surface between the ground and an airspace or void, Stoneley waves at interfaces and Lamb waves 
in layers all occur where relevant without additional coding. In beams and plates, bending waves 
occur automatically and appropriate representation of supports produces correct beam and plate 
modes. 
 
 
2.1.2 Damping 

Damping can take several forms, including viscous, friction and hysteretic damping. In the finite 
difference algorithm is is possible to create a frequency dependent (including a frequency-
independent) damping term with any desired spectrum shape using the relaxation principle of 
Boltzmann3 where  
 

s(t) = D1ε(t) -  ∫
∞
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where ϕ(∆t) = τ

τ
/2 teD ∆− is an after-effect function, D2 is a constant and τ is a relaxation time. D1 is a 

modulus, s(t) is stress and ε(t) is strain. By combining several after-effect functions with different 
values of D2 and τ, any relationship between loss factor and frequency may be represented. Note 
that in the frequency domain the integral has a real and imaginary part, with the result that the value 
of the modulus is reduced by the inclusion of the relaxation terms. Depending on the choice of the 
constants and relaxation times, the stiffness of a resilient element will be frequency-dependent, and 
the value of D1 must be adjusted at the same time that D2 and τ are selected to give the required 
dynamic stiffness. 
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2.1.3 Model boundaries 

The potential problem of spurious reflections from model boundaries can be overcome by the use of 
an impedance matching technique. This effectively assigns to the cells which are required to be 
non-reflective on the boundaries of the model the properties of a massless viscous damper such 
that  
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where η is the loss factor (dimensionless), K’’ is the imaginary part of a complex spring stiffness in 
which the real part is zero, ω the angular frequency, ρc the characteristic impedance of the medium, 
ξ0 and ξ-1 are the displacements of cell points 0 and –1 where the boundary is at cell 0, ρ  is the 
density of the cell contents and v0 is the velocity of cell 0. 
 
2.1.4 Porous media and water saturation 

The topic of sound propagation in fluid-saturated saturated porous solids was pioneered by Biot45, 
Biot predicted the existence of two compressional waves and one shear wave. One of the 
compressional waves attenuates very rapidly, and the other can be regarded as a modified form of 
the compressional wave which would exist in the dry solid. 
 
Biot’s work was developed by Stoll6 to include friction damping in the frame moduli, and was stated 
in generalised form by Yamamoto7 as 
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where the two complex roots yield values for the fast and slow compressional waves Cp1 and Cp2. 
The imaginary part of a complex wave speed leads the loss factor through the relationship η=2 x 
Im[1/C*]/Re[1/C*]. where C* is a complex wave speed. 
 
The Biot-Stoll shear wave velocity is given by  

)'/1()/( 2 2/12/1

mC fs ρρρµ −
−

=
 

H, Q and  M are Biot’s elastic moduli and related to the basic physical properties of porous media, 
 

H = (Kr - Ks)2/(Dr - Ks) + Ks + 4µ/3 
Q = Kr(Kr - Ks)/(Dr - Ks) 
M = Kr

2/(Dr - Ks) 
Dr = Kr[1+β(Kr/Kf – 1)] 

 
Where Kr is the bulk modulus of the frame material and Kf is the apparent bulk modulus of the pore 
fluid, and µ and Ks are the complex shear modulus and the complex bulk modulus of the skeletal 
frame, given by 
 

µ = µr (1+iδ) 
 
and 
 

Ks = Ksr  (1+iδ’) 
 
in which µr is the dynamic shear modulus, Ksr  is the dynamic shear modulus, and δ and δ’  are the 
loss factors of the skeletal frame. Also, ρ is the bulk density of the porous medium given by 
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ρ = (1-β)ρr + βρf
 
where β is the porosity, ρr is the density of the frame material and ρf is the fluid density. 
 
Finally, m’ is the complex virtual mass density given by  
 
m’ = (1 + α)ρf/β - i[ηF(ω)/ksω] in which α is the added mass coefficient of the frame (usually 0.25) 
and F(ω) is a viscous correction factor which, stated in terms of  
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where ber and bei are, respectively , the real and imaginary parts of the Kelvin fuction of the first 
kind or order zero, and ber’ and bei’ are their derivatives. The term νf is the fluid dynamic viscosity 
and dmean is the mean grain size.  
 
The Biot-Stoll formula gives a compressional wave which is always equal to or higher than the 
conventional elastic compression wave, and a second compressional wave which is slow and highly 
attenuated. While the second kind of wave can be ignored as a received signal, it is important in 
that a fractional of the initial wave energy is carried by it, and rapidly attenuated, reducing the 
amplitude of the fast wave, and also, on reflection at boundaries between soils of different 
impedances, some of the compression wave energy will be reflected as a wave of the slow kind, 
also to be rapidly attenuated. This may explain why field measurements of attenuation with distance 
from ground level or underground sources suggest higher loss factors than can be accounted for by 
friction, viscous or Masing effects. 
 
By comparison, the Biot-Stoll formula for shear waves is more simply related to the classical shear 
wave speed for elastic media. 
 
Stoll noted that when strain amplitudes are less than about 0.0001% soil moduli can be regarded as 
linear, and simpler equations for predicting velocity and attenuation are possible. He noted that in 
the case of dry materials such as sands, silts, sandstones and other granular materials, attenuation 
in low-amplitude waves may be adequately described by a model which assumes a constant loss 
factor. The principal mechanism of energy loss in these dry materials is friction that governs the 
minute amount of slip occurring within the contact area between particles. As a result the damping 
observed in a granular material is usually very small (e.g. typically of the order of 0.01 in 
sandstones and sands). When the pore spaces between the particles contain a fluid such as water, 
the observed attenuation is often significantly larger due to the addition of viscous losses in the 
fluid. In the case of materials with high permeability, there is overall motion of the fluid field relative 
to the skeletal frame. This result is frequency-dependent damping which changes rather rapidly 
over a fairly narrow frequency range. In finer materials with very low permeability, this kind of 
damping does not appear until quite high frequencies are reached. Another kind of viscous damping 
occurs, however, even in the low frequency range, as a result of local fluid motion in the vicinity of 
the intergranular contacts similar in nature to “squeeze film motion” as in the theory of lubrication. 
This second kind of viscous damping causes frequency dependent damping that can be described 
in terms of classical viscoelastic models.  
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The FDTD implementation of the Biot-Stoll equation can be simply achieved by using the equation 
to compute compressional wave speeds of the first kind, and shear wave speeds, and the 
frequency-dependent loss factor, and adjusting the parameters of the cells to yield the appropriate 
wave speeds and loss factors. Because the compressional wave of the second kind attenuates very 
rapidaly, it can be ignored. However, it does carry part of the vibrational energy, and at reflections 
between interfaces, for example at the top of a water table, some reflected energy will appear as a 
compressional wave of the second kind, to be rapidly attenuated. This is a form of damping which is 
not otherwise represented and may partially account for the higher observed attenuation rates than 
can be accounted for mathematically. 
 
2.1.5 Non-linearity 

Media such as soils  exhibit non-linear properties. The give rise to strain-dependent moduli, and 
consequent damping. However, the effects ore only significant at strains larger than those normally 
encountered in non-seismic vibration propagation. 
 
The non-linear behaviour of soil moduli was first expounded by Masing8 Madshus9 with reference to 
Isihara10 gives the Masing rule as  
 
In the loading half cycle: 
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In the unloading half cycle: 
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where the brackets signify that T is a function of Γ  as follows according to the hyperbolic soil model 
of Hardin and Drnevich11

( )
Γ
Γ
ΓΓ

+

=

r

GT
1

.
max

 

 
Gmax is the shear modulus for infinitesimally small strains; Γ  is strain, and 
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where Tf is the shear strength 
 
The formula for the damping which results from the non-linear stress-strain relationship is 
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2.1.6 Anisotropy 

Many soils, particularly overconsolidated clays, have moduli which depend on direction. A particular 
advantage of the FDTD method is that difference values of G and D can be applied to the I, j and k 
directions. The dependence of moduli on confining pressure, and thereby on depth below ground 
can also be taken into account by varying the values of G and D with increasing depth. 
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2.1.7 Stability 

For a FDTD model to be stable, the time step used must not exceed the Courant number, given by  
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where ∆x, ∆y, and ∆z are the cell sizes in the I, j and k directions. 
 
2.1.8 Bandwidth 

The lower limit of the bandwidth of an FDTD model is dependent on the run time, which should 
preferably be at least 4/fo where fo is the lower boundary of the frequency range. The upper limit is 
defined by the cell size, and the must be at least two cells per wavelength, and preferably four or 
more cells per wavelength. The input forcing signal should be filtered with a cut-off at the upper 
frequency limit of the bandwidth. 
 
2.1.9 Excitation and input force 

For a railway model, the excitation should be, firstly, a time-dependent force caused by the 
wheel/rail roughness profile. This is input as the force caused by the displacement of the Hertzian 
contact spring between a railway wheel and the rail, typically assumed to be 1.2 GN/m. However, 
the train is moving, so the point of contact must move at the same rate. To avoid a step-wise 
motion, the application of the force to the rail is preferably achieved by polynomial interpolation 
across the edges of adjacent cells. Secondly, the effect of the moving load at the wheel is modelled 
by applying the acceleration due to gravity to the wheel at each time step. 
 
The wheel/rail roughness profile may be an actual profile measured from actual track,. Or a 
synthesised profile which has the amplitude and spectrum shape typically found on the type of 
railway in question. Joints in the rail or flat spots on the wheel tread can be introduced as 
superimposed displacements in the roughness signal. 
 
 
3 THE BOUNDARY ELEMENT ALGORITHM  
For the prediction of noise from a vibration structure such as a railway viaduct, in the far field, it is 
possible to extend the FDTD grid to a large enough size to include the receptor locations. However, 
a smaller grid can be used, and computation time saved, by using a boundary element technique to 
predict sound pressure levels in the far field. The FDTD part of the model is used to compute the 
velocity and pressure on the face of each cell representing the structure, for input to the boundary 
element model. 
 
The boundary integral equation in the frequency domain12 is  
 

4πp(P) = -∫s [p(Q)G’(Q,P)+ikovn(Q)G(Q,P)]dS(Q) 
 
Where p(P) is the sound pressure at a point P, p(Q) and vn(Q) are the sound pressure and normal 
velocity distributions on the surface of the body, ko is the wave number and Q is a point on the 
surface of the radiating body. G is the free-field Green’s function G(Q,P)=e-ikr/r, where r=|Q-P|, the 
distance between points Q and P, and G’ is the derivative of G in the direction normal to the body. 
Effectively the equation states that the sound pressure at any point P is composed on the sum of 
the contributions of a dipole distribution of surface pressure and a monopole distribution of surface 
acceleration. The FD module computes both the sound pressure and acceleration at each radiating 
element, and computes the contributions of each element at each receptor for each time step. 
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4 CHOOSING CELL PROPERTIES 
The accuracy of an FDTD model depends of course on the appropriate assignment of properties to 
each cell. The properties to be assigned are shear modulus, compression modulus, (or shear 
modulus and Poisson’s ratio), loss factor and density. Loss factor is likely to be frequency 
dependent, and the use of the Boltzmann relaxation method produces some frequency dependence 
in the moduli, with the result that the Boltzmann parameters must be chosen not only to give the 
appropriate loss factor, but also the appropriate shear and compression moduli all as a function of 
frequency. 
 
Because of the limitations of the Courant number, very small cell sizes, for example to represent the 
webs and flanges of steel beams, can lead to excessively short timesteps and excessive run times. 
This problem can be overcome by representing an element such as an “H” section beam as a 
rectangular bar, and assigning sizes for ∆x, ∆y and ∆z, and for shear and compression modulus, to 
give the same value of bending stiffness in each direction, and mass per unit length, as those 
possessed by the actual section. Bending stiffness is the product of Young’s modulus and the 
second moment of area of the section. This simplification is acceptable when the only significant 
contribution of the element is in terms of bending waves. In cases where longitudinal wave 
propagation along the beam is significant, its true moduli and cross section must be used. 
 
For concrete structures, a decision has to be made on whether to assume the long-term or short-
term Young’s modulus, and the normal approach is to assume short-term values. 
 
For soils and rocks, moduli for infinitesimally small strains must be used, which effectively means 
that data from measurements of wave speeds, rather than from direct measurements of moduli are 
required, and these must be adjusted for the effect of confining pressure, and depth below ground. 
Where appropriate anisotropic material such as clay may require different moduli for each direction. 
The presence of a water table must be taken into account by using appropriate saturated and 
unsaturated values for D. 
 
When a model includes an airspace, for example air in a room, and sound pressure levels are to be 
computed, the effect of sound absorption in the room must be taken into account. This can be 
simplified if the reverberation time of the room is known or can be reliably assumed, and the effect 
of absorbent room surfaces taken into account by artificially increasing air absorption, giving air a 
loss factor of  
 

Tf 60

4.4
≈η  

 
where f is frequency in Hz. 
 
5 MODEL VERIFICATION AND VALIDATION 
Model verification is carried out by running models of structures and cases for which algebraic 
solutions are available, including propagation of compression, shear and other wave types in 
bounded, unbounded and layered media, and plates and beams. The effect of errors in cell property 
assumptions requires studies of the effects and probabilities of variations in cell properties. 
 
Model validation against field measurements clearly requires accurate knowledge of the material 
properties in the field case. The topics of calibration, validation and verification are addressed in 
Appendix C of reference 13. 
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6 MODEL EXAMPLES 
Examples of FDTD  models are given in Figures 1 to 6 below, including instanteous cross sections 
showing the displacements of cells. Because the displacement of rails is large compared with 
displacements of structural elements and surrounding soil, rail displacements have been 
suppressed in the cross sections and the displacements of the surrounding elements greatly 
exaggerated in order to display them clearly. 
 

Figure 1 Instantaneous cross section through model of railway in concrete trough (rail displacement 
suppressed) 
 

Figure 2 Instantaneous cross section through model of railway iin cut and cover tunnel adjacent to 
building (rails, sleepers and ballast omitted for clarity) 
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Figure 3 Isometric view of model of railway depot building on piled foundations above bored railway 
tunnel (soil around piles omitted for clarity) 
 

Figure 4 Instantaneous cross section through building in Figure 3 (rails omitted for clarity) 
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Figure 5 Instantaneous cross section through model of street-running tram adjacent to building 
founded on piles bearing on rock. 
 

Figure 6. Instantaneous cross section through railway on viaduct 
 
Output from the model is initially in the form of a time domain plot of, for the case of vibration, the 
displacement, velocity or acceleration, and in the case of airborne noise the sound pressure. Plots 
of this kind may be produced for all ro any cells in the model, the only cost being consumption of 
hard disk space and the large quantity of results. 
 
The time domain plot may be converted to a .WAV file and replayed through loudspeakers if 
required for auralisation purposes. Otherwise it may be subjected to frequency transformation into 
either narrow band spectra or 1/3 octave frequency bands. 
 
The vibration acceleration signal may be subjected to frequency weighting and the fourth-power 
integral obtained to give Vibration Dose Value. The airborne noise signal may be A-weighted and 
the square of the signal integrated in order to yield LAE (SEL) and thereby compute LAeq levels. 
 
Examples of time-domain, narrow band and 1/3 octave band spectra are shown in figures 7 to 9. 
The time-domain output may also be converted to a WAV file for auralisation. 
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Figure 7    Example of Time-domain output            Figure 8  Example of narrow band output 
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Figure 9 Example of 1/3 octave band output 
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